Advancing Artificial Intelligence in Sensors, Signals, and Imaging Informatics

Author:

Hsu William1,Baumgartner Christian2,Deserno Thomas3,

Affiliation:

1. Medical and Imaging Informatics, Department of Radiological Sciences, University of California, Los Angeles, United States of America

2. Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Austria

3. Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany

Abstract

Objective: To identify research works that exemplify recent developments in the field of sensors, signals, and imaging informatics. Method: A broad literature search was conducted using PubMed and Web of Science, supplemented with individual papers that were nominated by section editors. A predefined query made from a combination of Medical Subject Heading (MeSH) terms and keywords were used to search both sources. Section editors then filtered the entire set of retrieved papers with each paper having been reviewed by two section editors. Papers were assessed on a three-point Likert scale by two section editors, rated from 0 (do not include) to 2 (should be included). Only papers with a combined score of 2 or above were considered. Results: A search for papers was executed at the start of January 2019, resulting in a combined set of 1,459 records published in 2018 in 119 unique journals. Section editors jointly filtered the list of candidates down to 14 nominations. The 14 candidate best papers were then ranked by a group of eight external reviewers. Four papers, representing different international groups and journals, were selected as the best papers by consensus of the International Medical Informatics Association (IMIA) Yearbook editorial board. Conclusions: The fields of sensors, signals, and imaging informatics have rapidly evolved with the application of novel artificial intelligence/machine learning techniques. Studies have been able to discover hidden patterns and integrate different types of data towards improving diagnostic accuracy and patient outcomes. However, the quality of papers varied widely without clear reporting standards for these types of models. Nevertheless, a number of papers have demonstrated useful techniques to improve the generalizability, interpretability, and reproducibility of increasingly sophisticated models.

Publisher

Georg Thieme Verlag KG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3