Epithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability

Author:

Scanlon Vanessa12,Teixeira Alexandra3,Tyagi Tarun4,Zou Siying5,Zhang Ping-Xia12,Booth Carmen6,Kowalska M.78,Bao Jialing91011,Hwa John4,Hayes Vincent12,Marks Michael91011ORCID,Poncz Mortimer1112,Krause Diane1235

Affiliation:

1. Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States

2. The Yale Stem Cell Center, Yale University, New Haven, Connecticut, United States

3. Department of Pathology, Yale University, New Haven, Connecticut, United States

4. Department of Internal Medicine, Yale University, New Haven, Connecticut, United States

5. Department of Cell Biology, Yale University, New Haven, Connecticut, United States

6. Department of Comparative Medicine, Yale University, New Haven, Connecticut, United States

7. Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

8. Institute of Medical Biology, Polish Academy of Sciences, Philadelphia, Pennsylvania, United States

9. Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

10. Department of Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

11. University of Pennsylvania, Philadelphia, Pennsylvania, United States

12. Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

Abstract

AbstractCadherins play a major role in mediating cell–cell adhesion, which shares many parallels with platelet–platelet interactions during aggregate formation and clot stabilization. Platelets express epithelial (E)-cadherin, but its contribution to platelet function and/or platelet production is currently unknown. To assess the role of E-cadherin in platelet production and function in vitro and in vivo, we utilized a megakaryocyte-specific E-cadherin knockout mouse model. Loss of E-cadherin in megakaryocytes does not affect megakaryocyte maturation, platelet number or size. However, platelet dysfunction in the absence of E-cadherin is revealed when conditional knockout mice are challenged with acute antibody-mediated platelet depletion. Unlike wild-type mice that recover fully, knockout mice die within 72 hours post-antibody administration, likely from haemorrhage. Furthermore, conditional knockout mice have prolonged tail bleeding times, unstable clot formation, reduced clot retraction and reduced fibrin deposition in in vivo injury models. Murine platelet aggregation in vitro in response to thrombin and thrombin receptor activating peptide is compromised in E-cadherin null platelets, while aggregation in response to adenosine diphosphate (ADP) is not significantly different. Consistent with this, in vitro aggregation of primary human platelets in response to thrombin is decreased by an inhibitory E-cadherin antibody. Integrin activation and granule secretion in response to ADP and thrombin are not affected in E-cadherin null platelets, but Akt and glycogen synthase kinase 3β (GSK3β) activation are attenuated, suggesting a that E-cadherin contributes to aggregation, clot stabilization and retraction that is mediated by phosphoinositide 3-kinase/Akt/GSK3β signalling. In summary, E-cadherin plays a salient role in platelet aggregation and clot stability.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3