Effect of Static Cold Storage on Skeletal Muscle after Vascularized Composite Tissue Allotransplantation

Author:

Gok Emre1,Kubiak Carrie A.2,Guy Erin1,Kemp Stephen W.P.2,Ozer Kagan1

Affiliation:

1. Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan

2. Department of Plastic Surgery, University of Michigan Health System, Ann Arbor, Michigan

Abstract

Background Prolonged cold ischemia associated with static cold storage (SCS) results in higher incidence of acute and chronic allograft rejection in solid organ transplantations. Deleterious effects of SCS on vascularized composite tissue allograft were studied with limited data on muscle structure and function. The aim of this study is to evaluate the long-term impact of SCS on muscle metabolism, structure, and force generation using a syngeneic rat hindlimb transplantation model. Methods Sixty-five male Lewis rats (250 ± 25 g) were distributed into five groups, including naive control, sciatic nerve denervation/repair, immediate transplantation, transplantation following static warm storage for 6 hours at room temperature, and transplantation following SCS for 6 hours at 4°C. Sciatic nerves were repaired in all transplantations. Muscle samples were taken for histology and metabolomics analysis following electromyography and muscle force measurements at 12 weeks after transplantation. Results All cold-preserved limbs remained viable at 12 weeks, whereas animals receiving limbs preserved in room temperature had no survivors. The SCS transplantation group showed a 73% injury score, significantly higher than groups receiving immediate transplants without cold preservation (50%, p < 0.05). A significant decline in muscle contractile force was also demonstrated in comparison to the immediate transplantation group (p < 0.05). In the SCS group, muscle energy reserves remained relatively well preserved in surviving fibers. Conclusion SCS extends allograft survival but fails to preserve muscle structure and force.

Funder

American Foundation for Surgery of Hand

Michigan Regional Comprehensive Metabolomics Resource Core

Publisher

Georg Thieme Verlag KG

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3