Doxorubicin-Immersed Skeletal Muscle Grafts Promote Peripheral Nerve Regeneration Across a 10-mm Defect in the Rat Sciatic Nerve

Author:

Takeuchi Hisataka1,Sakamoto Akio1,Ikeguchi Ryosuke1,Ota Soichi1,Oda Hiroki1,Yurie Hirofumi1,Mitsuzawa Sadaki1,Matsuda Shuichi1

Affiliation:

1. Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Abstract

Background The treatment of peripheral nerve defects requires bridging materials. Skeletal muscle grafts have been studied as an alternative to nerve autografts because they contain longitudinally aligned basal laminar tubes that are similar to axons. Several pretreatment methods for muscle grafts have promoted axonal regeneration. Here, a new method of doxorubicin pretreatment was used, and the efficacy of the pretreated muscle graft was evaluated in a rat model of a sciatic nerve defect. Methods A rat model of a 10-mm sciatic nerve defect was analyzed in three settings: muscle grafts with and without doxorubicin pretreatment (M-graft-w-Dox and M-graft-w/o-Dox groups, respectively) and a nerve autograft group (N-graft) (n = 6/group). The M-graft-w-Dox group was immersed in a doxorubicin solution for 10 minutes and rinsed with saline. Analyses of target muscle atrophy, electrophysiology, and histology were performed 8 weeks after grafting. Results Electrophysiological parameters and target muscle atrophy were significantly superior in the M-graft-w-Dox group compared with the M-graft-w/o-Dox group. Histological assessment revealed the presence of a significantly greater number of regenerated axons in the M-graft-w-Dox group versus the M-graft-w/o-Dox group, while there were no significant differences between the M-graft-w-Dox and N-graft groups. The diameter of myelinated axons of the regenerated nerve in the M-graft-w-Dox group was significantly larger than that in the M-graft-w/o-Dox group, while it was not significantly different compared with the N-graft group. Conclusion Pretreatment of muscle grafts with doxorubicin promoted significant peripheral nerve regeneration. This method may represent a new option for the treatment of peripheral nerve defects.

Publisher

Georg Thieme Verlag KG

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3