Multistate Models: Accurate and Dynamic Methods to Improve Predictions of Thrombotic Risk in Patients with Cancer

Author:

Carmona-Bayonas Alberto1,Jimenez-Fonseca Paula2,Garrido Marcelo3,Custodio Ana4,Hernandez Raquel5,Lacalle Alejandra6,Cano Juana María7,Aguado Gema8,Martínez de Castro Eva9,Alvarez Manceñido Felipe10,Macias Ismael11,Visa Laura12,Martín Richard Marta13,Mangas Monserrat14,Sánchez Cánovas Manuel1,Longo Federico15,Iglesias Rey Leticia16,Martínez Lago Nieves17,Martín Carnicero Alfonso18,Sánchez Ana19,Azkárate Aitor20,Limón María Luisa21,Hernández Pérez Carolina22,Ramchandani Avinash23,Pimentel Paola24,Cerdá Paula25,Serrano Raquel26,Gil-Negrete Aitziber27,Marín Miguel28,Hurtado Alicia29,Sánchez Bayona Rodrigo30,Gallego Javier31

Affiliation:

1. Hematology and Medical Oncology Department, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB, Murcia, Spain

2. Medical Oncology Department, Hospital Universitario Central de Asturias, Oviedo, Spain

3. Medical Oncology Department, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile

4. Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain

5. Medical Oncology Department, Hospital Universitario de Canarias, Tenerife, Spain

6. Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona, Spain

7. Medical Oncology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain

8. Medical Oncology Department, Hospital Universitario Gregorio Marañon, Madrid, Spain

9. Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain

10. Pharmacy Department, Hospital Universitario Central de Asturias, Oviedo, Spain

11. Medical Oncology Department, Hospital Universitario Parc Tauli, Sabadell, Spain

12. Medical Oncology Department, Hospital Universitario El Mar, Barcelona, Spain

13. Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain

14. Medical Oncology Department, Hospital Galdakao-Usansolo, Galdakao-Usansolo, Spain

15. Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain

16. Medical Oncology Department, Complejo Hospitalario de Orense, Orense, Spain

17. Medical Oncology Department, Complejo Hospitalario Universitario de A Coruña, La Coruña, Spain

18. Medical Oncology Department, Hospital San Pedro, Logroño, Spain

19. Medical Oncology Department, Hospital Universitario Doce de Octubre, Madrid, Spain

20. Medical Oncology Department, Hospital Universitario Son Espases, Mallorca, Spain

21. Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain

22. Medical Oncology Department, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain

23. Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain

24. Medical Oncology Department, Hospital Santa Lucia, Cartagena, Spain

25. Medical Oncology Department, Centro Médico Teknon, Barcelona, Spain

26. Medical Oncology Department, Hospital Universitario Reina Sofía, Córdoba, Spain

27. Medical Oncology Department, Hospital Universitario Donostia, San Sebastián, Spain

28. Medical Oncology Department, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain

29. Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain

30. Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain

31. Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain

Abstract

AbstractResearch into cancer-associated thrombosis (CAT) entails managing dynamic data that pose an analytical challenge. Thus, methods that assume proportional hazards to investigate prognosis entail a risk of misinterpreting or overlooking key traits or time-varying effects. We examined the AGAMENON registry, which collects data from 2,129 patients with advanced gastric cancer. An accelerated failure time (AFT) multistate model and flexible competing risks regression were used to scrutinize the time-varying effect of CAT, as well as to estimate how covariates dynamically predict cumulative incidence. The AFT model revealed that thrombosis shortened progression-free survival and overall survival with adjusted time ratios of 0.72 and 0.56, respectively. Nevertheless, its prognostic effect was nonproportional and disappeared over time if the subject managed to survive long enough. CAT that occurred later had a more pronounced prognostic effect. In the flexible competing risks model, multiple covariates were seen to have significant time-varying effects on the cumulative incidence of CAT (Khorana score, secondary thromboprophylaxis, high tumor burden, and cisplatin-containing regimen), whereas other predictors exerted a constant effect (signet ring cells and primary thromboprophylaxis). The model that assumes proportional hazards was incapable of capturing the effect of these covariates and predicted the cumulative incidence in a biased way. This study evinces that flexible and multistate models are a useful and innovative method to describe the dynamic effect of variables associated with CAT and should be more widely used.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3