Fibrin-VLDL Receptor-Dependent Pathway Promotes Leukocyte Transmigration by Inhibiting Src Kinase Fyn and is a Target for Fibrin β15-42 Peptide

Author:

Yakovlev Sergiy12,Cao Chunzhang13,Galisteo Rebeca1,Zhang Li13,Strickland Dudley K.134,Medved Leonid12

Affiliation:

1. Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States

2. Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States

3. Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States

4. Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States

Abstract

AbstractAccording to the current view, binding of fibrin degradation product E1 fragment to endothelial VE-cadherin promotes transendothelial migration of leukocytes and thereby inflammation, and fibrin-derived β15–42 peptide reduces leukocyte transmigration by competing with E1 for binding to VE-cadherin and, in addition, by signaling through Src kinase Fyn. However, the very low affinity of β15–42 to VE-cadherin raised a question about its ability to inhibit E1–VE-cadherin interaction. Further, our previous study revealed that fibrin promotes leukocyte transmigration through the very-low-density lipoprotein (VLDL) receptor (VLDLR)-dependent pathway and suggested a possible link between the inhibitory properties of β15–42 and this pathway. To test such a link and the proposed inhibitory mechanisms for β15–42, we performed in vitro experiments using surface plasmon resonance, enzyme-linked immunosorbent assay, and leukocyte transendothelial migration assay, and in vivo studies with wild-type and VLDLR-deficient mice using mouse model of peritonitis. The experiments revealed that β15–42 cannot inhibit E1–VE-cadherin interaction at the concentrations used in the previous in vivo studies leaving the proposed Fyn-dependent signaling mechanism as a viable explanation for the inhibitory effect of β15–42. While testing this mechanism, we confirmed that Fyn plays a critical role in controlling fibrin-induced transendothelial migration of leukocytes and found that signaling through the VLDLR-dependent pathway results in inhibition of Fyn, thereby increasing leukocyte transmigration. Furthermore, our in vivo experiments revealed that β15–42 inhibits this pathway, thereby preventing inhibition of Fyn and reducing leukocyte transmigration. Thus, this study clarifies the molecular mechanism underlying the VLDLR-dependent pathway of leukocyte transmigration and reveals that this pathway is a target for β15–42.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3