Nonasaccharide Inhibits Intrinsic Factor Xase Complex by Binding to Factor IXa and Disrupting Factor IXa–Factor VIIIa Interactions

Author:

Xiao Chuang123,Zhao Longyan124,Gao Na124,Wu Mingyi1,Zhao Jinhua1

Affiliation:

1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

3. School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China

4. School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China

Abstract

AbstractA nonasaccharide (FG9) derived from natural fucosylated glycosaminoglycan (FG) is identified as a selective intrinsic factor Xase complex (FIXa-FVIIIa-Ca2+-phospholipid, FXase) inhibitor that possesses potential inhibition of venous thrombus in rats and shows negligible bleeding risk. The mechanism and molecular target of the nonasaccharide for intrinsic FXase inhibition were systematically investigated and compared with low molecular weight heparin (LMWH). Our results showed that FG9 dose-dependently inhibited FX activation by intrinsic FXase complex in a noncompetitive inhibition pattern, where the apparent affinity for FG9 was approximately 1.8-fold higher than that for LMWH. FG9 displayed no inhibitory effect on the activity of FIXa/phospholipid, and did not affect the decay rate of FVIIIa activity. FG9 reduced the apparent affinity of FIXa for FVIIIa in a dose-dependent manner, and accelerated the decay of intrinsic FXase complex activity. FG9 bound to FIXa with high affinity and the FIXa binding sites of FG9 were overlapped with that of LMWH, and the ability of FG-derived oligosaccharides to bind FIXa required the minimum 9 degrees of polymerization. FG9 derivatives were prepared and their structures were confirmed by one-dimensional/two-dimensional nuclear magnetic resonance. Structure–activity relationship studies showed that carboxy reduction significantly weakened its anti-FXase activity and binding affinity to FIXa, while the effects of carboxyl ethyl esterification and deacetylation were relatively weaker. Overall, our results suggest that the nonasaccharide FG9 strongly inhibits intrinsic FXase complex activity via binding to FIXa and disrupting FIXa–FVIIIa interactions, and the free carboxyl groups of FG9 are required for its potent anti-FXase activity.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3