New Insights in the Pathophysiology of Hospital- and Ventilator-Acquired Pneumonia: A Complex Interplay between Dysbiosis and Critical-Illness–Related Immunosuppression

Author:

Bourdiol A.1,Roquilly A.1

Affiliation:

1. Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France

Abstract

AbstractBoth hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) have long been considered as diseases resulting from the invasion by pathogens of a previously sterile lung environment. Based on this historical understanding of their pathophysiology, our approaches for the prevention and treatment have significantly improved the outcomes of patients, but treatment failures remain frequent. Recent studies have suggested that the all-antimicrobial therapy-based treatment of pneumonia has reached a glass ceiling. The demonstration that the constant interactions between the respiratory microbiome and mucosal immunity are required to tune homeostasis in a state of symbiosis has changed our comprehension of pneumonia. We proposed that HAP and VAP should be considered as a state of dysbiosis, defined as the emergence of a dominant pathogen thriving at the same time from the catastrophic collapse of the fragile ecosystem of the lower respiratory tract and from the development of critical-illness–related immunosuppression. This multidimensional approach to the pathophysiology of HAP and VAP holds the potential to achieve future successes in research and critical care. Microbiome and mucosal immunity can indeed be manipulated and used as adjunctive therapies or targets to prevent or treat pneumonia.

Publisher

Georg Thieme Verlag KG

Subject

Critical Care and Intensive Care Medicine,Pulmonary and Respiratory Medicine

Reference91 articles.

1. Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia;M R Eber;Arch Intern Med,2010

2. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies;W G Melsen;Lancet Infect Dis,2013

3. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus piperacillin/tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (RESTORE-IMI 2 Study);I Titov;Clin Infect Dis,2020

4. Implementation of French recommendations for the prevention and the treatment of hospital-acquired pneumonia: a cluster-randomized trial;A Roquilly;Clin Infect Dis Off Publ Infect Dis Soc Am,2020

5. Metagenomic analysis of the human distal gut microbiome;S R Gill;Science,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3