Developing an Analytical Pipeline to Classify Patient Safety Event Reports Using Optimized Predictive Algorithms

Author:

Adadey Asa1,Giannini Robert1,Possanza Lorraine B.1

Affiliation:

1. Partnership for Health IT Patient Safety, ECRI, Plymouth Meeting, Pennsylvania, United States

Abstract

Abstract Background Patient safety event reports provide valuable insight into systemic safety issues but deriving insights from these reports requires computational tools to efficiently parse through large volumes of qualitative data. Natural language processing (NLP) combined with predictive learning provides an automated approach to evaluating these data and supporting the work of patient safety analysts. Objectives The objective of this study was to use NLP and machine learning techniques to develop a generalizable, scalable, and reliable approach to classifying event reports for the purpose of driving improvements in the safety and quality of patient care. Methods Datasets for 14 different labels (themes) were vectorized using a bag-of-words, tf-idf, or document embeddings approach and then applied to a series of classification algorithms via a hyperparameter grid search to derive an optimized model. Reports were also analyzed for terms strongly associated with each theme using an adjusted F-score calculation. Results F1 score for each optimized model ranged from 0.951 (“Fall”) to 0.544 (“Environment”). The bag-of-words approach proved optimal for 12 of 14 labels, and the naïve Bayes algorithm performed best for nine labels. Linear support vector machine was demonstrated as optimal for three labels and XGBoost for four of the 14 labels. Labels with more distinctly associated terms performed better than less distinct themes, as shown by a Pearson's correlation coefficient of 0.634. Conclusions We were able to demonstrate an analytical pipeline that broadly applies NLP and predictive modeling to categorize patient safety reports from multiple facilities. This pipeline allows analysts to more rapidly identify and structure information contained in patient safety data, which can enhance the evaluation and the use of this information over time.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3