Affiliation:
1. Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
Abstract
AbstractThe development of high-throughput sequencing technologies has ushered in a new era of genomic testing in clinical medicine. This has greatly enhanced our diagnostic repertoire for hemostatic diseases particularly for milder or rarer bleeding disorders. New genetic causes for heritable platelet disorders have been discovered along with the recognition of clinical manifestations outside hemostasis, such as the association of leukemia with RUNX1 variation. Genome-wide association studies in heritable thrombophilia have demonstrated that some of the genetic variants that are commonly included in thrombophilia testing are of no clinical relevance, while uncovering new variants that should potentially be included. The implementation of new technology has necessitated far-reaching changes in clinical practice to deal with incidental findings, variants of uncertain significance, and genetic disease modifiers. Mild bleeding disorders that were previously considered to have a monogenic basis now appear to have an oligogenic etiology. To harness these advances in knowledge large databases have been developed to capture the new genomic information with phenotypic features on a population-wide scale. The use of this so-called “big data” requires new bioinformatics tools with the promise of delivering precision medicine in the foreseeable future. This review discusses the use of these technologies in clinical practice, the benefits of genomic testing, and some of the challenges associated with implementation.
Subject
Cardiology and Cardiovascular Medicine,Hematology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献