SYNGAP1 and Methylenetetrahydrofolate in Cerebrospinal Fluid: Cognitive Development after Oral Folate (5-Methyltetrahydrofolate) Supplementation in a 5-Year-Old Girl

Author:

Hess Valentin1ORCID,Miguel Justine1,Bonnemains Chrystèle23,Bilbault Claire14

Affiliation:

1. Department of Pediatric Neurology, CHRU de Nancy, Lorraine, France

2. Department of Pediatric Metabolism, CHRU de Nancy, Lorraine, France

3. Department of Pediatric Metabolism, CHRU de Strasbourg, Alsace, France

4. Department of Pediatric Neurology, Ban St Martin, Lorraine, France

Abstract

AbstractSynaptic Ras GTPase-activating protein 1 (SYNGAP1), also called Ras-GAP 1 or RASA5, is a cerebral protein with a role in brain synaptic function. Its expression affects the development, structure, function, and plasticity of neurons. Mutations in the gene cause a neurodevelopment disorder termed mental retardation-type 5, also called SYNGAP1 syndrome. This syndrome can cause many neurological symptoms including pharmaco-resistant epilepsy, intellectual disability, language delay, and autism spectrum disorder. The syndrome naturally evolves as epileptic encephalopathy with handicap and low intellectual level. A treatment to control epilepsy, limit any decrease in social capacities, and improve intellectual development is really a challenging goal for these patients. The etiologic investigation performed in a 5-year-old girl with early epileptic absence seizures (onset at 6 months) and psychomotor delay (language) revealed a low methylenetetrahydrofolate level in cerebrospinal fluid in a lumbar puncture, confirmed by a second one (35 nmol/L and 50 nmol/L vs. 60–100 nmol/L normal), associated with normal blood and erythrocyte folate levels. Hyperhomocysteinemia, de vivo disease, and other metabolic syndromes were excluded by metabolic analysis. No genetic disorders (like methylenetetrahydrofolate reductase and methenyltetrahydrofolate synthetase) with folate metabolism were found. The physical examination showed only a minor kinetic ataxia. An oral folate (5-methyltetrahydrofolate) supplementation was started with oral vitamin therapy. The child showed good progress in language with this new treatment; epilepsy was well balanced with only one antiepileptic drug. The SYNGAP1 mutation was identified in this patient's genetic analysis. Since the start of folate supplementation/vitamin therapy, the patient's neurologic development has improved. To our knowledge, no association between these two pathologies has been linked and no patient with this SYNGAP1 mutation has ever showed much intellectual progress. Low cerebral methylenetetrahydrofolate levels could be associated with SYNGAP1 mutations. One of the hypotheses is the link of folate metabolism with epigenetic changes including methylation process. One inborn metabolic activity in folate metabolism may be associated with SYNGAP1 disease with epigenetic repercussions. Further studies should assess the link of SYNGAP1 and methyltetrahydrofolate and the evolution of SYNGAP1 patients with oral folate supplementation or vitamin therapy.

Publisher

Georg Thieme Verlag KG

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3