Developing a Wearable Sensor for Continuous Tissue Oxygenation Monitoring: A Proof of Concept Study

Author:

Kwasnicki Richard M.1,Chen Ching-Mei1,Noakes Alex J.1,Hettiaratchy Shehan1,Yang Guang-Zhong1,Darzi Ara1

Affiliation:

1. Hamlyn Centre, Institute of Global Health Innovation, Imperial College, London, United Kingdom

Abstract

Abstract Objective Technologies facilitating continuous free tissue flap monitoring such as near infrared spectroscopy (NIRS) have been shown to improve flap salvage rates. However, the size and associated costs of such technology create a barrier to wider implementation. The aim of this study was to develop and validate a wearable sensor for continuous tissue oxygenation monitoring. Materials and Methods A forearm ischemia model was designed by using a brachial pressure cuff inflation protocol. Twenty healthy subjects were recruited. The forearm tissue oxygenation of each subject was monitored throughout the pressure cuff protocol by using a new optical sensor (Imperial College London), and a gold standard tissue spectrometry system (O2C, Medizintecknik, LEA, Germany). Data were processed to allow quantitative deoxygenation episode comparisons between inflations and sensor modalities. Results The correlation between O2C and optical sensor oxygenation measurements was moderate (average R = 0.672, p < 0.001). Incremental increases in cuff inflation duration resulted in a linear increase in deoxygenation values with both O2C and optical sensors, with significant differences recorded on consecutive inflations (wall shear rate, p < 0.005). The presence or absence of pulsatile blood flow was correctly determined throughout by both sensor modalities. Conclusion This study demonstrates the ability of a small optical sensor to detect and quantify tissue oxygenation changes and assess the presence of pulsatile blood flow. Low power, miniaturized electronics make the device capable of deployment in a wearable form which may break down the barriers for implementation in postoperative flap monitoring.

Funder

EPSRC

Publisher

Georg Thieme Verlag KG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3