Antibiotic Optimization in the Intensive Care Unit

Author:

Lizza Bryan D.1,Raush Nick12,Micek Scott T.13

Affiliation:

1. Barnes Jewish Hospital, Saint Louis, Missouri

2. Forrest General Hospital, Hattiesburg, Mississippi

3. University of Health Sciences and Pharmacy, Saint Louis, Missouri

Abstract

AbstractEffective antimicrobial therapy remains paramount to successful treatment of patients with critical illness, such as pneumonia and sepsis. Unfortunately, critically ill patients often exhibit altered pharmacokinetics and pharmacodynamics (PK/PD) that make this endeavor challenging. Particularly in sepsis, alterations in volume of distribution (Vd) and protein binding lead to unpredictable effects on serum levels of various antimicrobials. Additionally, metabolic pathways and excretion may be significantly impacted due to end-organ failure. These dynamic factors may increase the likelihood of deleterious effects such as treatment failure or toxicity. Meeting these challenging scenarios has led to various strategies meant to improve clinical cure without untoward consequences. Vancomycin and β-lactam antimicrobials are frequently utilized and have been the focus of dose optimization strategies including extended infusion (EI) or continuous infusion (CI). Available data suggests that administration of vancomycin by CI may reduce the risk of nephrotoxicity without increasing the risk of treatment failure, although retrospective data are largely utilized in supporting this method. Other efforts to optimize vancomycin have focused on transitioning from trough-based therapeutic drug monitoring (TDM) to area-under-the-curve: minimum inhibitory concentration (AUC:MIC) ratios. Despite the creation of more user-friendly methods of calculation and data suggesting reduced rates of nephrotoxicity, widespread implementation is limited, in part due to clinician comfort. Use of β-lactams in patients with sepsis is similarly problematic due to observational data demonstrating fluctuations in serum levels in the setting of critical illness. Implementing TDM of agents such as piperacillin-tazobactam, cefepime, and meropenem has been suggested as a method of improving time above MIC (T >MIC). This practice is limited by the lack of access to commercial assays and the failure of rigorous studies to demonstrate improved treatment success. Clinicians should be aware of these challenges and should refine their dosing strategies based on individualized patient factors to reduce treatment failure.

Publisher

Georg Thieme Verlag KG

Subject

Critical Care and Intensive Care Medicine,Pulmonary and Respiratory Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3