Three-Dimensional Virtual Reality Simulation to Safe Planning Neurosurgical Procedure in Brain Aneurysms, Latin American Single-Center Experience: Advantages and Limitations

Author:

Zárate-Méndez Antonio M.1,Ramos-Delgado José M.1ORCID,Lujan-Guerra Juan C.1ORCID,Rio-Olivares Carlos D.1,Moreira-Ponce Luis E.1,Aceves-Chimal José L.1

Affiliation:

1. Department of Neurosurgery, Centro Médico Nacional “20 de Noviembre” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico

Abstract

Abstract Background The neurosurgical approach to clipping cerebral aneurysms has been a complex challenge for all neurosurgeon experts in cerebrovascular surgery. The three-dimensional computed tomography angiography (3D-CTA) allows identifying bone and vascular structures close to an aneurysm to simulate in virtual 3D images, the appropriate and safest approach to cerebral aneurysm clipping. Objectives This study aims to share our experience using 3D simulation as a support to the safe planning for cerebrovascular disease surgery. Materials and Methods We reviewed the surgical outcomes from a cerebrovascular neurosurgeon using the 3D-CTA images in 360-degree reconstruction in the planning of the preoperative surgical procedure for the treatment of brain aneurysm. In all patients, the virtual surgical approach was replicated in real-time surgery. Results We analyzed 34 patients around 51 ± 8 years of age. Of these, 76.5% (n = 26) and 23.5% (n = 8) were males and females, respectively. Saccular aneurysms were the most frequent (85%), the Arteries affected by aneurysms were middle cerebral artery (n = 6), basilar tip (n = 6), vertebral artery in V3 and V4 (n = 6), and posterior cerebral artery (n = 5). The virtual surgical pterional approach was the most frequently used (50%), followed by fronto-orbito-zigomático (29%) and far lateral (15%) approaches. There were no intraoperative complications in any patient. Conclusion Preoperative 3D virtual reality simulation is a great support tool to perform a safe surgical procedure in real-time for the treatment of simple and complex brain aneurysms.

Publisher

Georg Thieme Verlag KG

Subject

Materials Chemistry

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3