Quantifying the Impact of Infusion Alerts and Alarms on Nursing Workflows: A Retrospective Analysis

Author:

Yu Denny12,Obuseh Marian12,DeLaurentis Poching2

Affiliation:

1. School of Industrial Engineering, Purdue University, West Lafayette, Indiana, United States

2. Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States

Abstract

Abstract Background Smart infusion pumps affect workflows as they add alerts and alarms in an information-rich clinical environment where alarm fatigue is already a major concern. An analytic approach is needed to quantify the impact of these alerts and alarms on nursing workflows and patient safety. Objectives To analyze a detailed infusion dataset from a smart infusion pump system and identify contributing factors for infusion programming alerts, operational alarms, and alarm resolution times. Methods We analyzed detailed infusion pump data across four hospitals in a health system for up to 1 year. The prevalence of alerts and alarms was grouped by infusion type and a selected list of 32 high-alert medications (HAMs). Logistic regression was used to explore the relationship between a set of risk factors and the occurrence of alerts and alarms. We used nonparametric tests to explore the relationship between alarm resolution times and a subset of predictor variables. Results The study dataset included 745,641 unique infusions with a total of 3,231,300 infusion events. Overall, 28.7% of all unique infusions had at least one operational alarm, and 2.1% of all unique infusions had at least one programming alert. Alarms averaged two per infusion, whereas at least one alert happened in every 48 unique infusions. Eight percent of alarms took over 4 minutes to resolve. Intravenous fluid infusions had the highest rate of error-state occurrence. HAMs had 1.64 more odds for alerts than the rest of the infusions. On average, HAMs had a higher alert rate than maintenance fluids. Conclusion Infusion pump alerts and alarms impact clinical care, as alerts and alarms by design interrupt clinical workflow. Our study showcases how hospital system leadership teams can leverage infusion pump informatics to prioritize quality improvement and patient safety initiatives pertaining to infusion practices.

Funder

Regenstrief Foundation

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3