Affiliation:
1. Department of Pediatrics, Yodogawa Christian Hospital, Osaka, Japan
2. Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
3. Department of Pediatrics, Faculty of Medicine, Osaka City University, Osaka, Japan
Abstract
Objective Neonatal hypoxic–ischemic encephalopathy (HIE) causes permanent motor deficit “cerebral palsy (CP),” and may result in significant disability and death. Therapeutic hypothermia (TH) had been established as the first effective therapy for neonates with HIE; however, TH must be initiated within the first 6 hours after birth, and the number needed to treat is from 9 to 11 to prevent brain damage from HIE. Therefore, additional therapies for HIE are highly needed. In this review, we provide an introduction on the mechanisms of HIE cascade and how TH and cell therapies such as umbilical cord blood cells and mesenchymal stromal cells (MSCs), especially umbilical cord-derived MSCs (UC-MSCs), may protect the brain in newborns, and discuss recent progress in regenerative therapies using UC-MSCs for neurological disorders.
Results The brain damage process “HIE cascade” was divided into six stages: (1) energy depletion, (2) impairment of microglia, (3) inflammation, (4) excitotoxity, (5) oxidative stress, and (6) apoptosis in capillary, glia, synapse and/or neuron. The authors showed recent 13 clinical trials using UC-MSCs for neurological disorders.
Conclusion The authors suggest that the next step will include reaching a consensus on cell therapies for HIE and establishment of effective protocols for cell therapy for HIE.
Key Points
Funder
Japan Agency for Medical Research and Development
Subject
Obstetrics and Gynaecology,Pediatrics, Perinatology, and Child Health
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献