Kinematics of a Novel Canine Cervical Fusion System

Author:

Zindl Claudia1,Fitzpatrick Noel2,Litsky Alan S.3,Allen Matthew J.1

Affiliation:

1. Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom

2. Fitzpatrick Referrals Ltd, Surrey, United Kingdom

3. Departments of Orthopaedics and Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States

Abstract

Abstract Objective The aim of this study was to determine the biomechanical behaviour of a novel distraction–fusion system, consisting of an intervertebral distraction screw, pedicle locking screws and connecting rods, in the canine caudal cervical spine. Study Design Biomechanical study in cadaveric canine cervicothoracic (C3–T3) spines (n = 6). Cadaveric spines were harvested, stripped of musculature, mounted on a four-point bending jig, and tested using non-destructive four-point bending loads in extension (0–100 N), flexion (0–60 N) and lateral bending (0–40 N). Angular displacement was recorded from reflective optical trackers rigidly secured to C5, C6 and C7. Data for primary and coupled motions were collected from intact spines and following surgical stabilization (after ventral annulotomy and nucleotomy) with the new implant system. Results As compared with the intact spine, instrumentation significantly reduced motion at the operated level (C5-C6) with a concomitant non-significant increase at the adjacent level (C6-C7). Conclusion The combination of a locking pedicle screw-rod system and intervertebral spacer provides an alternative solution for surgical distraction–stabilization in the canine caudal cervical spine and supports the feasibility of using this new implant system in the management of disc-associated cervical spondylomyelopathy in dogs. The increase in motion at C6-C7 may suggest the potential for adjacent level effects and clinical trials should be designed to address this.

Funder

Fitzpatrick Referrals Ltd, Godalming, United Kingdom

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3