Speech Recognition in Noise Using Binaural Diotic and Antiphasic Digits-in-Noise in Children: Maturation and Self-Test Validity

Author:

Wolmarans Jenique1,De Sousa Karina C.1,Frisby Caitlin1,Mahomed-Asmail Faheema1,Smits Cas2,Moore David R.34,Swanepoel De Wet15

Affiliation:

1. Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, Gauteng, South Africa

2. Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands

3. Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio

4. Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom

5. Ear Science Institute Australia, Subiaco, Western Australia, Australia

Abstract

Abstract Background Digits-in-noise (DIN) tests have become popular for hearing screening over the past 15 years. Several recent studies have highlighted the potential utility of DIN as a school-aged hearing test. However, age may influence test performance in children due to maturation. In addition, a new antiphasic stimulus paradigm has been introduced, allowing binaural intelligibility level difference (BILD) to be measured by using a combination of conventional diotic and antiphasic DIN. Purpose This study determined age-specific normative data for diotic and antiphasic DIN, and a derived measure, BILD, in children. A secondary aim evaluated the validity of DIN as a smartphone self-test in a subgroup of young children. Research Design A cross-sectional, quantitative design was used. Participants with confirmed normal audiometric hearing were tested with a diotic and antiphasic DIN. During the test, arrangements of three spoken digits were presented in noise via headphones at varying signal-to-noise ratio (SNR). Researchers entered each three-digit spoken sequence repeated by the participant on a smartphone keypad. Study Sample Overall, 621 (428 male and 193 female) normal hearing children (bilateral pure tone threshold of ≤ 20 dB hearing level at 1, 2, and 4 kHz) ranging between the ages of 6 and 13 years were recruited. A subgroup of 7-year-olds (n = 30), complying with the same selection criteria, was selected to determine the validity of self-testing. Data Collection and Analysis DIN testing was completed via headphones coupled to a smartphone. Diotic and antiphasic DIN speech recognition thresholds (SRTs) were analyzed and compared for each age group. BILD was calculated through subtraction of antiphasic from diotic SRTs. Multiple linear regressions were run to determine the effect of age on SRT and BILD. In addition, piecewise linear regressions were fit across different age groups. Wilcoxon signed-rank tests were used to determine differences between self- and facilitated tests. Results Age was a significant predictor, of both diotic and antiphasic DIN SRTs (p < 0.05). SRTs improved by 0.15 dB and 0.35 dB SNR per year for diotic and antiphasic SRTs, respectively. However, age effects were only significant up to 10 and 12 years for antiphasic and diotic SRTs, respectively. Age significantly (p < 0.001) predicted BILD, which increased by 0.18 dB per year. A small SRT advantage for facilitated over self-testing was seen but was not significant (p > 0.05). Conclusions Increasing age was significantly associated with improved SRT and BILD using diotic and antiphasic DINs. DIN could be used as a smartphone self-test in young children from 7 years of age with appropriate quality control measures to avoid potential false positives.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3