Fibers Generated by Plasma Des-AA Fibrin Monomers and Protofibril/Fibrinogen Clusters Bind Platelets: Clinical and Nonclinical Implications

Author:

Galanakis Dennis K.1,Protopopova Anna2,Zhang Liudi3,Li Kao3,Marmorat Clement3,Scheiner Tomas2,Koo Jaseung3,Savitt Anne G.4,Rafailovich Miriam3,Weisel John2

Affiliation:

1. Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York

2. Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

3. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York

4. Department of Microbiology and Immunology, Stony Brook University School of Medicine, Stony Brook, New York

Abstract

Abstract Objective Soluble fibrin (SF) is a substantial component of plasma fibrinogen (fg), but its composition, functions, and clinical relevance remain unclear. The study aimed to evaluate the molecular composition and procoagulant function(s) of SF. Materials and Methods Cryoprecipitable, SF-rich (FR) and cryosoluble, SF-depleted (FD) fg isolates were prepared and adsorbed on one hydrophilic and two hydrophobic surfaces and scanned by atomic force microscopy (AFM). Standard procedures were used for fibrin polymerization, crosslinking by factor XIII, electrophoresis, and platelet adhesion. Results Relative to FD fg, thrombin-induced polymerization of FR fg was accelerated and that induced by reptilase was markedly delayed, attributable to its decreased (fibrinopeptide A) FpA. FR fg adsorption to each surface yielded polymeric clusters and co-cryoprecipitable solitary monomers. Cluster components were crosslinked by factor XIII and comprised ≤21% of FR fg. In contrast to FD fg, FR fg adsorption on hydrophobic surfaces resulted in fiber generation enabled by both clusters and solitary monomers. This began with numerous short protofibrils, which following prolonged adsorption increased in number and length and culminated in surface-linked three-dimensional fiber networks that bound platelets. Conclusion The abundance of adsorbed protofibrils resulted from (1) protofibril/fg clusters whose fg was dissociated during adsorption, and (2) adsorbed des-AA monomers that attracted solution counterparts initiating protofibril assembly and elongation by their continued incorporation. The substantial presence of both components in transfused plasma and cryoprecipitate augments hemostasis by accelerating thrombin-induced fibrin polymerization and by tightly anchoring the resulting clot to the underlying wound or to other abnormal vascular surfaces.

Funder

NSF DMR

NIH

Publisher

Georg Thieme Verlag KG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3