Dynamic Analysis of the Biochemical Changes in Rats with Polycystic Ovary Syndrome (PCOS) Using Urinary 1H NMR-Based Metabonomics

Author:

Huang Wei,Li Shanxia,Luo Naxin,Lu Kena1,Ban Sheng1,Lin Hanmei1

Affiliation:

1. Gynaecology, The First Affiliated Hospital, Guangxi Traditional Chinese Medicine University, Nanning 530023, China

Abstract

AbstractPolycystic ovarian syndrome (PCOS) is the most common endocrine disease that causes reproductive abnormalities in fertile women. It is closely related to the persistent anovulatory, insulin resistance, and high androgen. However, the molecular mechanisms underlying the pathological development of PCOS are still unclear. In this study, we aimed to explore the distinctive metabolic patterns in insulin combined with human chorionic gonadotrophin induced PCOS. The dynamic changes of endogenous metabolites in the development of PCOS were studied using untargeted metabolomic approaches based on nuclear magnetic resonance. The results showed that the degree of PCOS disorder metabolites at different periods was not exactly the same. Twelve significantly differential endogenous metabolites from different time points were selected as potential biomarkers relate to pathological process of PCOS. Among them, six metabolites showed a good diagnostic accuracy with PCOS model. The arginine and proline metabolic pathway was considered as one of the most crucial pathways that affects occurrence and development of PCOS. In addition, IRS-1, Akt, PI3K, IκB, and NF-κB (p65) were significantly changed in the ovary tissue of PCOS rats, which revealed that the IRS-1-PI3K/Akt and NF-κB signal pathway may be involved in the development of PCOS. This study demonstrated that metabolomic analysis is a powerful tool for providing novel insight into understanding the pathogenesis of PCOS and provide a basic reference for the diagnosis of PCOS at the onset stage.

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3