Designed Synthesis of Diversely Substituted Hydantoins and Hydantoin-Based Hybrid Molecules: A Personal Account

Author:

Kumar VinodORCID

Abstract

AbstractHydantoin and its analogues such as thiohydantoin and iminohydantoin have received substantial attention from both a chemical and a biological point of view. Several compounds of this class have shown useful pharmacological activities such as anticonvulsant, antitumor, antiarrhythmic, and herbicidal properties that have led, in some cases, to clinical applications. Because of these broad-spectrum activities, intensive research efforts have been dedicated in industry and academia to the synthesis and structural modifications of hydantoin and its derivatives. Realizing the importance of hydantoin in organic and medicinal chemistry, we also initiated a research program that successfully designed and developed new routes and methods for the formation of hydantoin, thiohydantoin, and iminohydantoin substituted at various positions, particularly at the N-1 position without following a protection–deprotection strategy. Because combinations of two or more pharmacophoric groups can lead to hybrid molecules that display a mixed mechanism of action on biological targets, we extended our developed strategy to the syntheses of new types of hydantoin-based hybrid molecules by combining hydantoin with a triazole, isoxazoline, or phosphate scaffold as a second pharmacophore to exploit their diverse biological functions.1 Introduction2 Chemistry and Properties2.1 Physical Properties2.2 Chemical Properties2.3 Biological Properties3 General Synthetic Methods4 Synthesis of Diversely Substituted Hydantoins5 Synthesis of Diversely Substituted Thiohydantoins6 Synthesis of Diversely Substituted Iminohydantoins7 Fused or Bicyclic (Thio)hydantoins8 Di- or Multivalent (Thio)hydantoins9 Hydantoin-Based Hybrid Molecules9.1 Hydantoin–Isooxazoline Hybrids9.2 Hydantoin–Triazole Hybrids9.3 Hydantoin–Phosphate Hybrids: Phosphorylated Hydantoins10 Summary and Outlook

Funder

..

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3