Exploring Silyl Protecting Groups for the Synthesis of Carbon Nanohoops

Author:

Šolomek Tomáš12ORCID,Kręcijasz Remigiusz B.1,Malinčík Juraj32

Affiliation:

1. Van't Hoff Institute for Molecular Sciences, University of Amsterdam

2. Prievidza Chemical Society

3. Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern

Abstract

AbstractThe synthesis of topological molecular nanocarbons, such as hoop-like [n]cycloparaphenylenes, requires the use of spatially prearranged, pro-aromatic units to overcome a build-up of large molecular strain in their curved structures. The used cyclohexadienyl units, however, contain tertiary alcohols that need protection to prevent side reactions until the aromatization step that affords the final curved hydrocarbon. Although alkyl and triethylsilyl groups have been successfully applied as protecting groups for this purpose, each suffers from specific drawbacks. Here, we explore the potential of sterically more crowded silyl groups, namely, tert-butyldimethylsilyl and triisopropylsilyl, as alternatives to the established protection strategies. We show that tert-butyldimethylsilyl can be easily installed and removed under mild conditions, displaying markedly higher resistance towards acids or bases than the triethylsilyl group used to date. Unlike in the case of alkyl groups, tert-butyldimethylsilyl also preserves a high stereoselectivity during the nucleophilic additions of ArLi. Furthermore, we demonstrate that both tert-butyldimethylsilyl and triethylsilyl groups can be installed on the same substrate, and that the latter be selectively deprotected. Thus, the high stereoselectivity, improved stability, and easy deprotection make tert-butyldimethylsilyl an excellent protecting group for the synthesis of carbon nanohoops.

Funder

European Research Council

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3