Hyperforin and Miquelianin from St. Johnʼs Wort Attenuate Gene Expression in Neuronal Cells After Dexamethasone-Induced Stress

Author:

Verjee Sheela1,Weston Anna2,Kolb Christiane3,Kalbhenn-Aziz Heba3,Butterweck Veronika1

Affiliation:

1. Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Switzerland

2. Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Switzerland

3. Phytomedicines Supply and Development Center, Bayer Consumer Health Division, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany

Abstract

AbstractDysregulation of the hypothalamic-pituitary-adrenal (HPA) axis plays an important part in the development of depressive symptoms. In this study, the effects of a commercial St. Johnʼs wort extract (STW3-VI), hyperforin, miquelianin, and the selective serotonin reuptake inhibitor citalopram on the expression of genes relevant to HPA axis function were investigated in human neuronal cells. SH-SY5Y cells were treated with STW3-VI (20 µg/mL), hyperforin (1 µM), miquelianin (10 µM), or citalopram (10 µM) in the presence of the glucocorticoid receptor agonist dexamethasone (DEX,10 µM) for 6 h and 48 h, respectively. Quantitative real-time polymerase chain reaction was used to determine the expression of FKBP5 (FK506 binding protein 51), CREB (cAMP responsive element binding protein), GRIK4 (glutamate ionotropic receptor kainate type subunit 4), VEGF (vascular endothelial growth factor), NET (norepinephrine transporter), and ARRB (β-arrestins), promising biomarkers of antidepressant therapy. Using DEX to mimic stress conditions, it was shown that the gene expression pattern of FKBP5, CREB, GRIK4, VEGF, NET, and ARRB2 in SH-SY5Y cells is time- and treatment-dependent. Most pronounced effects were observed for FKBP5: after 6 h of co-incubation, only STW3-VI could reverse the DEX-induced increase in FKBP5 expression, and after 48 h, citalopram, miquelianin, and hyperforin also reversed the glucocorticoid-induced increase in FKBP5 mRNA expression. The effects observed on FKBP5, CREB, GRIK4, VEGF, NET, and ARRB2 are in good correlation with published data, suggesting that this in vitro model could be used to screen the responsiveness of antidepressants under stress conditions.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3