In Vitro Human Dihydroorotate Dehydrogenase Inhibitory, Anti-inflammatory and Cytotoxic Activities of Alkaloids from the Seeds of Nigella glandulifera

Author:

Gao Jun-Bo12,Zhang Xing-Jie3,Zhang Rui-Han3,Zhu Li-Li4,Pu De-Bing3,Li Xiao-Li3,Li Hong-Lin4,Xu Min5,Xiao Wei-Lie13

Affiliation:

1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; School of Chemical Science and Technology; and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China

4. State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China

5. Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China

Abstract

AbstractFour new dolabellane-type diterpene alkaloids, glandulamines A – D (1 – 4), together with twelve known compounds (5 – 16), were isolated from the seeds of Nigella glandulifera using repeated column chromatography and semipreparative HPLC. The structures of 1 – 16 were elucidated based on NMR data analysis, HRMS experiments and other spectroscopic interpretations. The absolute configuration of 5 was determined by single-crystal X-ray diffraction data for the first time. Compounds 10 and 12 showed human dihydroorotate dehydrogenase inhibitory activity with IC50 values of 61.1 ± 5.3 and 45.9 ± 3.0 µM, respectively. Molecular docking of the active compound 12 and positive control teriflunomide on the inhibitor-binding site of human dihydroorotate dehydrogenase was subsequently performed to visualize the interaction pattern. In addition, compounds 8 and 10 exhibited inhibitory effects against lipopolysaccharide-induced nitric oxide production with inhibition rates of 61 and 41%, respectively, at the concentration of 10 µM. Compounds 9 and 12 showed cytotoxic activities with cell viability varying from 29 ~ 57% at 100 µM against T98G, U87, U251, and GL261 glioma cancer cell lines. These data provide new insights on the pharmacologically active compounds of this plant widely used in folk medicine.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3