Codonopsis lanceolata Contributes to Ca2+ Homeostasis by Mediating SOCE and PLC/IP3 Pathways in Vascular Endothelial and Smooth Muscle Cells

Author:

Kim Min Kyung1,Han A Young1,Shin You Kyoung1,Lee Kwang-Won2,Seol Geun Hee1ORCID

Affiliation:

1. Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea

2. Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea

Abstract

Abstract Codonopsis lanceolata has been widely used as an anti-inflammatory and anti-lipogenic agent in traditional medicine. Recently, C. lanceolata was reported to prevent hypertension by improving vascular function. This study evaluated the effects of C. lanceolata and its major component lancemaside A on cytosolic calcium concentration in vascular endothelial cells and vascular smooth muscle cells. Cytosolic calcium concentration was measured using fura-2 AM fluorescence. C. lanceolata or lancemaside A increased the cytosolic calcium concentration by releasing Ca2+ from the endoplasmic reticulum and sarcoplasmic reticulum and by Ca2+ entry into endothelial cells and vascular smooth muscle cells from extracellular sources. The C. lanceolata- and lancemaside A-induced cytosolic calcium concentration increases were significantly inhibited by lanthanum, an inhibitor of non-selective cation channels, in both endothelial cells and vascular smooth muscle cells. Moreover, C. lanceolata and lancemaside A significantly inhibited store-operated Ca2+ entry under pathological extracellular Ca2+ levels. In Ca2+-free extracellular fluid, increases in the cytosolic calcium concentration induced by C. lanceolata or lancemaside A were significantly inhibited by U73122, an inhibitor of phospholipase C, and 2-APB, an inositol 1,4,5-trisphosphate receptor antagonist. In addition, dantrolene treatment, which inhibits Ca2+ release through ryanodine receptor channels, also inhibited C. lanceolata- or lancemaside A-induced increases in the cytosolic calcium concentration through the phospholipase C/inositol 1,4,5-trisphosphate pathway. These results suggest that C. lanceolata and lancemaside A increase the cytosolic calcium concentration through the non-selective cation channels and phospholipase C/inositol 1,4,5-trisphosphate pathways under physiological conditions and inhibit store-operated Ca2+ entry under pathological conditions in endothelial cells and vascular smooth muscle cells. C. lanceolata or lancemaside A can protect endothelial cells and vascular smooth muscle cells by maintaining cytosolic calcium concentration homeostasis, suggesting possible applications for these materials in diets for preventing vascular damage.

Funder

Basic Science Research Program through the National Research Foundation of Korea

National Research Foundation of Korea Forest Service

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Reference38 articles.

1. Vascular physiology of a Ca2+ mobilizing second messenger – cyclic ADP-ribose;A Y Zhang;J Cell Mol Med,2006

2. Calcium signalling: dynamics, homeostasis and remodelling;M J Berridge;Nat Rev Mol Cell Biol,2003

3. Calcium signals that determine vascular resistance;M Ottolini;Wiley Interdiscip Rev Syst Biol Med,2019

4. Molecular mechanisms underlying the activation of eNOS;I Fleming;Pflugers Arch,2010

5. Vascular smooth muscle contraction in hypertension;R M Touyz;Cardiovasc Res,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3