Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy

Author:

Zhao Yuan-Yuan1,Xue Di-Xiu2,Wang Ya-Lei1,Zhang Rong3,Sun Bin1,Cai Yong-Ping4,Feng Hui1,Cai Yi1,Xu Jian-Ming1

Affiliation:

1. Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China

2. Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China

3. Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China

4. Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China

Abstract

Abstract Background We developed a computer-assisted diagnosis model to evaluate the feasibility of automated classification of intrapapillary capillary loops (IPCLs) to improve the detection of esophageal squamous cell carcinoma (ESCC). Methods We recruited patients who underwent magnifying endoscopy with narrow-band imaging for evaluation of a suspicious esophageal condition. Case images were evaluated to establish a gold standard IPCL classification according to the endoscopic diagnosis and histological findings. A double-labeling fully convolutional network (FCN) was developed for image segmentation. Diagnostic performance of the model was compared with that of endoscopists grouped according to years of experience (senior > 15 years; mid level 10 – 15 years; junior 5 – 10 years). Results Of the 1383 lesions in the study, the mean accuracies of IPCL classification were 92.0 %, 82.0 %, and 73.3 %, for the senior, mid level, and junior groups, respectively. The mean diagnostic accuracy of the model was 89.2 % and 93.0 % at the lesion and pixel levels, respectively. The interobserver agreement between the model and the gold standard was substantial (kappa value, 0.719). The accuracy of the model for inflammatory lesions (92.5 %) was superior to that of the mid level (88.1 %) and junior (86.3 %) groups (P < 0.001). For malignant lesions, the accuracy of the model (B1, 87.6 %; B2, 93.9 %) was significantly higher than that of the mid level (B1, 79.1 %; B2, 90.0 %) and junior (B1, 69.2 %; B2, 79.3 %) groups (P < 0.001). Conclusions Double-labeling FCN automated IPCL recognition was feasible and could facilitate early detection of ESCC.

Publisher

Georg Thieme Verlag KG

Subject

Gastroenterology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3