Important Regulatory Roles of Erythrocytes in Platelet Adhesion to the von Willebrand Factor on the Wall under Blood Flow Conditions

Author:

Tamura Noriko12,Shimizu Kazuya3,Shiozaki Seiji3,Sugiyama Kazuyasu4,Nakayama Masamitsu1,Goto Shinichi1,Takagi Shu3,Goto Shinya1ORCID

Affiliation:

1. Department of Medicine (Cardiology), Research Center for Metabolic Disease, Tokai University School of Medicine and Tokai University Graduate School of Medicine, Isehara, Japan

2. Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan

3. Department of Bio-engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

4. Department of Mechanical Science and Bioengineering, Osaka University School of Engineering Science, Osaka, Japan

Abstract

AbstractThe role of erythrocytes in platelet adhesion to von Willebrand factor (VWF) on the vessel wall through their membrane glycoprotein (GP)Ibα under blood flow conditions has not yet been elucidated. Blood specimens containing fluorescent-labeled platelets and native, biochemically fixed, or artificial erythrocytes at various hematocrits were perfused on the surface of VWF immobilized on the wall at a shear rate of 1,500 s−1. The rates of platelet adhesion were measured under each condition. The computer simulation of platelet adhesion to the VWF on the wall at the same shear rate was conducted by solving the governing equations with a finite-difference method on a K computer. The rates of platelet adhesion were calculated at various hematocrit conditions in the computational domain of 100 µm (x-axis) × 400 µm (y-axis) × 100 µm (z-axis). Biological experiments demonstrated a positive correlation between the rates of platelet adhesion and hematocrit values in native, fixed, and artificial erythrocytes. (r = 0.992, 0.934, and 0.825 respectively, p < 0.05 for all). The computer simulation results supported the hematocrit-dependent increase in platelet adhesion rates on VWF (94.3/second at 10%, 185.2/second at 20%, and 327.9/second at 30%). These results suggest that erythrocytes play an important role in platelet adhesion to VWF. The augmented z-axis fluctuation of flowing platelets caused by the physical presence of erythrocytes is speculated to be the cause of the hematocrit-dependent increase in platelet adhesion.

Funder

MEXT/JSTH Kakenhi

Vehicle Racing Commemorative Foundation

Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering

Japan Agency for Medical Research and Development

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3