DxGenerator: An Improved Differential Diagnosis Generator for Primary Care Based on MetaMap and Semantic Reasoning

Author:

Sanaeifar Ali1,Eslami Saeid1,Ahadi Mitra2,Kahani Mohsen3,Vakili Arki Hassan1

Affiliation:

1. Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2. Department of Gastroenterology and Hepatology, School of Medicine, Mashhad University of Medical Sciences, MUMS, Iran

3. Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Abstract Background In recent years, researchers have used many computerized interventions to reduce medical errors, the third cause of death in developed countries. One of such interventions is using differential diagnosis generators in primary care, where physicians may encounter initial symptoms without any diagnostic presuppositions. These systems generate multiple diagnoses, ranked by their likelihood. As such, these reports' accuracy can be determined by the location of the correct diagnosis in the list. Objective This study aimed to design and evaluate a novel practical web-based differential diagnosis generator solution in primary care. Methods In this research, a new online clinical decision support system, called DxGenerator, was designed to improve diagnostic accuracy; to this end, an attempt was made to converge a semantic database with the unified medical language system (UMLS) knowledge base, using MetaMap tool and natural language processing. In this regard, 120 diseases of gastrointestinal organs causing abdominal pain were modeled into the database. After designing an inference engine and a pseudo-free-text interactive interface, 172 patient vignettes were inputted into DxGenerator and ISABEL, the most accurate similar system. The Wilcoxon signed ranked test was used to compare the position of correct diagnoses in DxGenerator and ISABEL. The α level was defined as 0.05. Results On a total of 172 vignettes, the mean and standard deviation of correct diagnosis positions improved from 4.2 ± 5.3 in ISABEL to 3.2 ± 3.9 in DxGenerator. This improvement was significant in the subgroup of uncommon diseases (p-value < 0.05). Conclusion Using UMLS knowledge base and MetaMap Tools can improve the accuracy of diagnostic systems in which terms are entered in a free text manner. Applying these new methods will help the medical community accept medical diagnostic systems better.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3