Synthesis of Triarylpyrylium Salts Using a Mild, Eco-friendly Route

Author:

Owen Connor1,Spiridopoulos Casey1,Chirdon Danielle2,Mills Isaac1,Starvaggi Nicholas1ORCID,Morrow Zachary2

Affiliation:

1. Department of Chemistry, Mount St. Mary’s University

2. Department of Chemistry, West Chester University

Abstract

AbstractPyrylium salts based on a cationic oxygen heterocycle are a key class of chromophores. However, synthesis of these salts generally requires use of harsh acids, copious organic solvents, and in many cases, hazardous conditions. This work provides a two-pot synthesis for substituted triphenyl pyrylium salts wherein chalcone intermediates are first prepared and then mild methanesulfonic acid is used in combination with a dehydrating agent to drive pyrylium cyclization. Purification is achieved through a simple, aqueous workup involving counterion metathesis which avoids the need for environmentally unfriendly organic solvents. This mild, green approach has been applied to synthesize a collection of known pyryliums as well as a new family of red-shifted pyrylium chromophores bearing p-pyrrolidinylphenyl substituents. The synthesis of the latter group demonstrates that unlike other current methods, our approach offers enhanced functional group tolerance as well as finer control over substituent placement.

Funder

National Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3