The State of Machine Learning in Outcomes Prediction of Transsphenoidal Surgery: A Systematic Review

Author:

Smith Emily J.1,Naik Anant1ORCID,Janbahan Mika1,Yang Darrion B.1ORCID,Smith Alexander D.1,Thompson Charee M.2,Varshney Lav R.3,Hassaneen Wael14ORCID

Affiliation:

1. Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, United States

2. Department of Communication, University of Illinois Urbana Champaign, Champaign, Illinois, United States

3. Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States

4. Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, United States

Abstract

AbstractThe purpose of this analysis is to assess the use of machine learning (ML) algorithms in the prediction of postoperative outcomes, including complications, recurrence, and death in transsphenoidal surgery. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed all papers that used at least one ML algorithm to predict outcomes after transsphenoidal surgery. We searched Scopus, PubMed, and Web of Science databases for studies published prior to May 12, 2021. We identified 13 studies enrolling 5,048 patients. We extracted the general characteristics of each study; the sensitivity, specificity, area under the curve (AUC) of the ML models developed as well as the features identified as important by the ML models. We identified 12 studies with 5,048 patients that included ML algorithms for adenomas, three with 1807 patients specifically for acromegaly, and five with 2105 patients specifically for Cushing's disease. Nearly all were single-institution studies. The studies used a heterogeneous mix of ML algorithms and features to build predictive models. All papers reported an AUC greater than 0.7, which indicates clinical utility. ML algorithms have the potential to predict postoperative outcomes of transsphenoidal surgery and can improve patient care. Ensemble algorithms and neural networks were often top performers when compared with other ML algorithms. Biochemical and preoperative features were most likely to be selected as important by ML models. Inexplicability remains a challenge, but algorithms such as local interpretable model–agnostic explanation or Shapley value can increase explainability of ML algorithms. Our analysis shows that ML algorithms have the potential to greatly assist surgeons in clinical decision making.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Rhinology;Otolaryngologic Clinics of North America;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3