A Protocol to Reduce Interobserver Variability in the Computed Tomography Measurement of Orbital Floor Fractures

Author:

Ang ChuanHan1,Low JinRong2,Shen JiaYi2,Cai Elijah Zheng Yang2,Hing Eileen Chor Hoong2,Chan YiongHuak3,Sundar Gangadhara4,Lim ThiamChye25

Affiliation:

1. Department of Surgery, National University of Singapore, Singapore

2. Department of Surgery, National University Health System, Singapore

3. Biostatistics Unit, National University of Singapore, Singapore

4. Department of Ophthalmology, National University Health System, Singapore

5. Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore

Abstract

Orbital fracture detection and size determination from computed tomography (CT) scans affect the decision to operate, the type of surgical implant used, and postoperative outcomes. However, the lack of standardization of radiological signs often leads to the false-positive detection of orbital fractures, while nonstandardized landmarks lead to inaccurate defect measurements. We aim to design a novel protocol for CT measurement of orbital floor fractures and evaluate the interobserver variability on CT scan images. Qualitative aspects of this protocol include identifying direct and indirect signs of orbital fractures on CT scan images. Quantitative aspects of this protocol include measuring the surface area of pure orbital floor fractures using computer software. In this study, 15 independent observers without clinical experience in orbital fracture detection and measurement measured the orbital floor fractures of three randomly selected patients following the protocol. The time required for each measurement was recorded. The intraclass correlation coefficient of the surface area measurements is 0.999 (0.997–1.000) with p-value < 0.001. This suggests that any observer measuring the surface area will obtain a similar estimation of the fractured surface area. The maximum error limit was 0.901 cm2 which is less than the margin of error of 1 cm2 in mesh trimming for orbital reconstruction. The average duration required for each measurement was 3 minutes 19 seconds (ranging from 1 minute 35 seconds to 5 minutes). Measurements performed with our novel protocol resulted in minimal interobserver variability. This protocol is effective and generated reproducible results, is easy to teach and utilize, and its findings can be interpreted easily.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3