Euryachincoside, a Novel Phenolic Glycoside with Anti-Hepatic Fibrosis Activity from Eurya chinensis

Author:

Li Bai-Lin1,Liang Hui-Jun1,Li Qian-Ran1,Wang Qian1,Ao Zhuo-Yi1,Fan Yu-Wen1,Zhang Wei-Jie1,Lian Xin1,Chen Jia-Yan1,Yuan Jie1ORCID,Wu Jie-Wei1ORCID

Affiliation:

1. School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China

Abstract

Abstract Eurya chinensis has been recorded as a folk medicine traditionally used for treatment of a variety of symptoms. However, the phytochemical and pharmacological investigations of this plant are still scarce. A novel phenolic glycoside named Euryachincoside (ECS) was isolated by chromatographic separation from E. chinensis, and its chemical structure was identified by analysis of HRMS and NMR data. Its anti-hepatic fibrosis effects were evaluated in both HSC-T6 (rat hepatic stellate cells) and carbon tetrachloride (CCl4)-induced mice with Silybin (SLB) as the positive control. In an in vitro study, ECS showed little cytotoxicity and inhibited transforming growth factor-beta (TGF-β)-induced Collagen I (Col1) along with alpha-smooth muscle actin (α-SMA) expressions in HSC-T6. An in vivo study suggested ECS significantly ameliorated hepatic injury, secretions of inflammatory cytokines, and collagen depositions. Moreover, ECS markedly mediated Smad2/3, nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways both in vitro and vivo. These present findings confirmed that ECS is a novel phenolic glycoside from E. chinensis with promising curative effects on hepatic fibrosis, and its mechanisms may include decreasing extracellular matrix accumulation, reducing inflammation and attenuating free radicals via Smad2/3, NF-κB and Nrf2 signaling pathways, which may shed light on the exploration of more effective phenolic glycoside-based anti-fibrotic agents.

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3