Hsa_circ_0080608 Attenuates Lung Cancer Progression by Functioning as a Competitive Endogenous RNA to Regulate the miR-661/ADRA1A Pathway

Author:

Ren Chengbo1,Cui Ling1,Li Ruibiao1,Song Xiao1,Li Jinqiu1,Xi Qiang1,Zhang Zhilin1,Zhao Lixia2

Affiliation:

1. Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China

2. Department of Internal Medicine Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China

Abstract

AbstractCircular RNAs (circRNAs) participate in the progression of human cancers and have been broadly elucidated. Here, we aimed to elucidate the roles and functional mechanisms of hsa_circ_0080608 (circ_0080608) in lung cancer. Quantitative real-time PCR (qPCR) was performed to assess the mRNA expression levels of circ_0080608, miR-661, and adrenoceptor alpha 1A (ADRA1A). Western blotting was performed to measure ADRA1A protein levels. CCK-8, colony formation, and Transwell assays were performed to determine the effect of circ_0080608 on cell proliferation and migration. Animal models were used to assess how circ_0080608 influences tumor progression in vivo. The binding relationships of miR-661’s with circ_0080608 and ADRA1A was confirmed using dual-luciferase reporter and RIP assays. Circ_0080608 exhibited relatively low expression in lung cancer samples and cells. Lung cancer cells overexpressing circ_0080608 exhibited reduced migratory and proliferative abilities. Additionally, circ_0080608 binds to miR-661 and operates as a competing endogenous RNA (ceRNA) and shares a miR-661 binding site with the 3’ UTR of ADRA1A. Furthermore, circ_0080608 inversely regulates miR-661 expression, consequently restraining the aggressive behavior of lung cancer cells. Lung cancer cells overexpressing ADRA1A also exhibit repressed migratory and proliferative abilities. However, reintroduction of miR-661 led to a decline in ADRA1A expression, thereby attenuating the functional effects of ADRA1A. Circ_0080608 impedes lung cancer progression by regulating the miR-661/ADRA1A pathway. Our findings provide new insights into the progression of lung cancer.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3