Organocatalyzed Oxa-Diels–Alder Reactions: Recent Progress

Author:

Biswas Anup1,Kundu Samrat2,Maji Modhu Sudan2,Pal Dhananjoy2,Pal Amit2

Affiliation:

1. Department of Chemistry, Hooghly Women’s College

2. Department of Chemistry, Indian Institute of Technology Kharagpur

Abstract

AbstractThe oxa-Diels–Alder reaction is a straightforward, atom-economical process for the construction of six-membered oxacycles, which are privileged structures due to their very common occurrence in several pharmaceuticals and natural products. As with many other asymmetric transformations, organocatalysis provides an elegant pathway to their synthesis via [4+2] annulation under mild reaction conditions. The oxa-Diels–Alder reaction utilizes either an α,β-unsaturated carbonyl as an oxa-diene with a suitable dienophile or a simple carbonyl as a dienophile with other dienes. A range of organocatalysts has been explored in the past decade to execute this strategy. The catalysts induce stereoselectivities via two basic reactivities: (1) The formation of chiral intermediates, or (2) selectively activating suitable reactants via a transition state. The present short review compiles organocatalyzed asymmetric oxa-Diels–Alder reactions published over the last ten years, along with detailed discussions on mechanistic approaches.1 Introduction2 Catalysis through Covalent Activation2.1 N-Heterocyclic Carbenes2.2 Amines2.3 Isothiourea Catalysis2.4 Phosphines3 Catalysis through Non-Covalent Activation3.1 Bifunctional Amines3.2 Brønsted Acids3.3 Guanidines4 Multicatalysis through Both Covalent and Non-Covalent Activation5 Conclusion

Funder

Science & Engineering Research Board

University Grants Commission

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3