Abstract
AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which provides impetus for the innovation of chiral organosilicon chemistry. This short review summarizes recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We endeavor to highlight the great potential of this methodology and hope that this review will shed light on new perspectives and inspire further research in this emerging area.1 Introduction2 Enantioselective C–H Functionalization Induced by Oxidative Addition of an Aryl-OTf Bond3 Enantioselective C–H Functionalization Induced by Oxidative Addition of a Silacyclobutane4 Directing-Group-Assisted Enantioselective C–H Functionalization5 Enantioselective Dehydrogenative C–H/Si–H Coupling5.1 Enantioselective C(sp2)–H Silylation5.2 Enantioselective C(sp3)–H Silylation6 Summary and Outlook
Funder
National Natural Science Foundation of China
Guangdong Provincial Key Laboratory of Catalysis
Shenzhen Natural Science Fund
Subject
Organic Chemistry,Catalysis
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献