Development of a novel endoscopic hemostasis-assisted navigation AI system in the standardization of post-ESD coagulation

Author:

Fujinami Haruka1ORCID,Kuraishi Shun2,Teramoto Akira3,Shimada Seitaro3,Takahashi Saeko3,Ando Takayuki3,Yasuda Ichiro3

Affiliation:

1. Endoscopy, University of Toyama Hospital, Toyama, Japan

2. Medical Device Management Center, University of Toyama Hospital, Toyama, Japan

3. Third department of Internal medicine, University of Toyama, Toyama, Japan

Abstract

Abstract Background and study aims While gastric endoscopic submucosal dissection (ESD) has become a treatment with fewer complications, delayed bleeding remains a challenge. Post-ESD coagulation (PEC) is performed to prevent delayed bleeding. Therefore, we developed an artificial intelligence (AI) to detect vessels that require PEC in real time. Materials and methods Training data were extracted from 153 gastric ESD videos with sufficient images taken with a second-look endoscopy (SLE) and annotated as follows: (1) vessels that showed bleeding during SLE without PEC; (2) vessels that did not bleed during SLE with PEC; and (3) vessels that did not bleed even without PEC. The training model was created using Google Cloud Vertex AI and a program was created to display the vessels requiring PEC in real time using a bounding box. The evaluation of this AI was verified with 12 unlearned test videos, including four cases that required additional coagulation during SLE. Results The results of the test video validation indicated that 109 vessels on the ulcer required cauterization. Of these, 80 vessels (73.4%) were correctly determined as not requiring additional treatment. However, 25 vessels (22.9%), which did not require PEC, were overestimated. In the four videos that required additional coagulation in SLE, AI was able to detect all bleeding vessels. Conclusions The effectiveness and safety of this endoscopic treatment-assisted AI system that identifies visible vessels requiring PEC should be confirmed in future studies.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3