Impact of real-time use of artificial intelligence in improving adenoma detection during colonoscopy: A systematic review and meta-analysis

Author:

Ashat Munish1,Klair Jagpal Singh2,Singh Dhruv3,Murali Arvind Rangarajan1,Krishnamoorthi Rajesh2

Affiliation:

1. Department of Gastroenterology and Hepatology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States

2. Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington, United States

3. Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, New York, United States

Abstract

Abstract Background and study aims With the advent of deep neural networks (DNN) learning, the field of artificial intelligence (AI) is rapidly evolving. Recent randomized controlled trials (RCT) have investigated the influence of integrating AI in colonoscopy and its impact on adenoma detection rates (ADRs) and polyp detection rates (PDRs). We performed a systematic review and meta-analysis to reliably assess if the impact is statistically significant enough to warrant the adoption of AI -assisted colonoscopy (AIAC) in clinical practice. Methods We conducted a comprehensive search of multiple electronic databases and conference proceedings to identify RCTs that compared outcomes between AIAC and conventional colonoscopy (CC). The primary outcome was ADR. The secondary outcomes were PDR and total withdrawal time (WT). Results Six RCTs (comparing AIAC vs CC) with 5058 individuals undergoing average-risk screening colonoscopy were included in the meta-analysis. ADR was significantly higher with AIAC compared to CC (33.7 % versus 22.9 %; odds ratio (OR) 1.76, 95 % confidence interval (CI) 1.55–2.00; I2 = 28 %). Similarly, PDR was significantly higher with AIAC (45.6 % versus 30.6 %; OR 1.90, 95 %CI, 1.68–2.15, I2 = 0 %). The overall WT was higher for AIAC compared to CC (mean difference [MD] 0.46 (0.00–0.92) minutes, I2 = 94 %). Conclusions There is an increase in adenoma and polyp detection with the utilization of AIAC.

Publisher

Georg Thieme Verlag KG

Subject

Gastroenterology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3