Synthesis of Chiral Primary Amines via Enantioselective Reductive Amination: From Academia to Industry

Author:

Zhang Xumu1,Yin Qin2ORCID,Shi Yongjie1,Rong Nianxin2

Affiliation:

1. Department of Chemistry, Southern University of Science and Technology

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Abstract

AbstractChiral primary amines widely exist in drugs and are exceptionally important subunits or synthons in the syntheses of chiral secondary and tertiary amines of medicinal interest. Metal-catalyzed enantioselective reductive amination (ERA) of ketones with ammonium salts or ammonia provides a direct method for their synthesis. Although very useful, progress in this field has been very slow and important advances have only been achieved in the last few years. Several major challenges exist in this reaction, including (1) the reversible formation of unstable NH-imine intermediates; (2) the strong coordination property of N-containing reagents toward metal species; and (3) the lack of efficient catalytic systems that enable high enantiocontrol. Generally, the efficiency and enantiocontrol of this reaction is dependent on the substrate type, for instance, the use of α-keto esters/amides or aryl alkyl ketones is well established and they have even been used in the industrial production of chiral amine drugs. However, highly enantioselective control in dialkyl ketones, cyclic ketones, and α-keto acids remains unsolved. Herein, the historical development of ERA reactions with ammonium salts or ammonia gas is summarized, and novel synthetic applications toward useful synthons or drugs are presented. In addition, the factors restricting the growth of this method are also discussed.1 Introduction2 Enantioselective Reductive Amination via Hydrogenation2.1 Enantioselective Reductive Amination of β-Keto Esters/Amides2.2 Enantioselective Reductive Amination of Simple Ketones2.3 Enantioselective Reductive Amination of α-Functionalized Ketones2.4 Enantioselective Reductive Amination/Cyclization Cascade Reactions2.5 Others3 Enantioselective Reductive Amination via Transfer Hydrogenation4 Synthetic Applications5 Conclusions and Outlook

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3