Affiliation:
1. Department of Chemistry and Biochemistry, Florida Atlantic University
2. Center for Molecular Biology and Biotechnology, Florida Atlantic University
Abstract
AbstractNature remarkably employs posttranslational modifications of the 20 canonical α-amino acids to devise a far larger structural, conformational, and functional diversity found in non-proteinogenic amino acids (NPAAs), which ultimately translates into a plethora of complex biological functions. Synthetic chemists are continuously trying to reproduce and even extrapolate the repertoire of NPAA building blocks to build structural diversity into bioactive molecules and materials. The direct asymmetric functionalization of α-imino esters represents one of the most robust and attractive routes to NPAAs. This review summarizes the most prominent examples of bench-stable (ald)imine surrogates exploited for the synthesis of NPAAs, including our most recent results in the nucleophilic substitution of α-haloglycines and other α-haloaminals. A synopsis of kinetic studies, reaction optimizations, and enantioselective catalytic methods is also presented.1 Introduction2 Asymmetric Synthesis of Tertiary α-Substituted NPAAs2.1 From N,O-Acetals (α-Hydroxy/Alkyloxy/Acetoxyglycines)2.2 From α-Amido Sulfones2.3 From α-Haloglycine Esters2.4 From N,O-Bis(Boc) Hydroxyglycine3 Asymmetric Synthesis of Acyclic Quaternary α,α-Disubstituted NPAAs4 Concluding Remarks
Funder
National Institute of General Medical Sciences
Subject
Organic Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献