Affiliation:
1. Institut für Organische Chemie, Universität Stuttgart
2. Department of Chemistry, University of Leicester
Abstract
Functionalized hydropentalenes (i.e., bicyclo[3.3.0]octanones) constitute important building blocks for natural products and for ligands for asymmetric catalysis. The assembly and tailored functionalization of this convex roof-shaped scaffold is challenging and has motivated a variety of synthetic approaches including our own contributions, which will be presented in this account.1 Introduction2 Biosynthesis of Hydropentalenes3 Hydropentalenes through the Pauson–Khand Reaction4 Hydropentalenes through Transannular Oxidative Cyclization of Cycloocta-1,4-diene5 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Dodecahydrocyclopenta[a]indenes6 Functionalization of Bicyclo[3.3.0]octan-1,4-diones to Crown Ether Hybrids7 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Cylindramide8 Tandem Ring-Opening Metathesis/Ring-Closing Metathesis/Cross-Metathesis of Bicyclo[2.2.1]heptanes9 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Geodin A10 Hydropentalenes through Enantioselective Desymmetrization of Weiss Diketones11 Functionalization of Weiss Diketones by Carbonyl Ene Reactions12 Functionalization of the Weiss Diketone to Cylindramide and Geodin A Core Units13 Biological Properties of Bicyclo[3.3.0]octanes14 Hydropentalenes through Vinylcyclopropane Cyclopentene Rearrangement15 Functionalization of Bicyclo[3.3.0]octanes toward Chiral Dienes16 Miscellaneous Syntheses of Hydropentalenes17 Conclusion and Outlook
Funder
Deutsche Forschungsgemeinschaft
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
European Commission
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献