Affiliation:
1. Chinese PLA General Hospital, Neurosurgery, Beijing, China
Abstract
Abstract
Background Preoperative planning mainly relies on digital subtraction angiography (DSA) and computed tomography angiography. However, neither technique can reveal thrombi in giant intracranial aneurysms (GIAs). In this study, we aimed to reconstruct the circulating and noncirculating parts of GIAs with the time-of-flight (TOF) and motion-sensitized driven-equilibrium (MSDE) sequences with 3D Slicer to reveal an integrated presentation of GIAs, compare its accuracy, and validate the usefulness for preoperative planning.
Material and Methods Patients with GIAs who were treated with microsurgery in our department were included in this study. Both the TOF and MSDE sequence data for each patient were loaded into 3D Slicer for reconstruction and segmentation. The parameters measured by 3D Slicer were compared with those measured by DSA.
Results The mean diameter for all GIAs was 28.7 ± 1.5 mm (range, 25.9–31.9 mm). The mean diameter for all GIAs measured by DSA and 3D Slicer was 24.46 ± 5.25 and 28.66 ± 1.48 mm, respectively (t = 4.948, p < 0.01). When only the nonthrombotic GIAs were included, the mean diameter measured by DSA and 3D Slicer was 28.69 ± 2.03 and 28.97 ± 1.79 mm, respectively (t = 1.023, p = 0.323). The mean aneurysmal volume was 8,292.6 ± 1,175.1 mm3 and the mean thrombotic volume was 3,590.0 ± 1,003.7 mm3.
Conclusion The MSDE sequence brings diagnostic benefits as a comparison to other MRI sequences. Reconstruction of GIAs with 3D Slicer is a low-cost, dependable, and useful supplemental technique for surgical planning.
Subject
Clinical Neurology,Surgery
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献