The Clotting Trigger Is an Important Determinant for the Coagulation Pathway In Vivo or In Vitro—Inference from Data Review

Author:

He Shu12,Cao Honglie2,Thålin Charlotte1,Svensson Jan1,Blombäck Margareta12,Wallén Håkan1

Affiliation:

1. Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden

2. Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Abstract

AbstractBlood coagulation comprises a series of enzymatic reactions leading to thrombin generation and fibrin formation. This process is commonly illustrated in a waterfall-like manner, referred to as the coagulation cascade. In vivo, this “cascade” is initiated through the tissue factor (TF) pathway, once subendothelial TF is exposed and bound to coagulation factor VII (FVII) in blood. In vitro, a diminutive concentration of recombinant TF (rTF) is used as a clotting trigger in various global hemostasis assays such as the calibrated automated thrombogram, methods that assess fibrin turbidity and fibrin viscoelasticity tests such as rotational thromboelastometry. These assays aim to mimic in vivo global coagulation, and are useful in assessing hyper-/hypocoagulable disorders or monitoring therapies with hemostatic agents. An excess of rTF, a sufficient amount of negatively charged surfaces, various concentrations of exogenous thrombin, recombinant activated FVII, or recombinant activated FIXa are also used to initiate activation of specific sub-processes of the coagulation cascade in vitro. These approaches offer important information on certain specific coagulation pathways, while alterations in pro-/anticoagulants not participating in these pathways remain undetectable by these methods. Reviewing available data, we sought to enhance our knowledge of how choice of clotting trigger affects the outcome of hemostasis assays, and address the call for further investigations on this topic.

Funder

Clas Groschinsky fund

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3