Artificial Intelligence in the Intensive Care Unit

Author:

Greco Massimiliano12,Caruso Pier F.1,Cecconi Maurizio12

Affiliation:

1. Department of Anesthesiology and Intensive Care, Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy

2. Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy

Abstract

AbstractThe diffusion of electronic health records collecting large amount of clinical, monitoring, and laboratory data produced by intensive care units (ICUs) is the natural terrain for the application of artificial intelligence (AI). AI has a broad definition, encompassing computer vision, natural language processing, and machine learning, with the latter being more commonly employed in the ICUs. Machine learning may be divided in supervised learning models (i.e., support vector machine [SVM] and random forest), unsupervised models (i.e., neural networks [NN]), and reinforcement learning. Supervised models require labeled data that is data mapped by human judgment against predefined categories. Unsupervised models, on the contrary, can be used to obtain reliable predictions even without labeled data. Machine learning models have been used in ICU to predict pathologies such as acute kidney injury, detect symptoms, including delirium, and propose therapeutic actions (vasopressors and fluids in sepsis). In the future, AI will be increasingly used in ICU, due to the increasing quality and quantity of available data. Accordingly, the ICU team will benefit from models with high accuracy that will be used for both research purposes and clinical practice. These models will be also the foundation of future decision support system (DSS), which will help the ICU team to visualize and analyze huge amounts of information. We plea for the creation of a standardization of a core group of data between different electronic health record systems, using a common dictionary for data labeling, which could greatly simplify sharing and merging of data from different centers.

Publisher

Georg Thieme Verlag KG

Subject

Critical Care and Intensive Care Medicine,Pulmonary and Respiratory Medicine

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3