Remote Microphone Technology for Children with Hearing Loss or Auditory Processing Issues

Author:

Schafer Erin C.1,Kirby Benjamin1,Miller Sharon1

Affiliation:

1. Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, Texas.

Abstract

AbstractSchool classrooms are noisy and reverberant environments, and the poor acoustics can be a barrier to successful learning in children, particularly those with multiple disabilities, auditory processing issues, and hearing loss. A new set of listening challenges have been imposed by the recent global pandemic and subsequent online learning requirements. The goal of this article is to review the impact of poor acoustics on the performance of children with auditory processing issues, mild hearing loss, and unilateral hearing loss. In addition, we will summarize the evidence in support of remote microphone technology by these populations.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Reference60 articles.

1. Background noise levels and reverberation times in unoccupied classrooms: predictions and measurements;H A Knecht;Am J Audiol,2002

2. Background noise levels and reverberation times in old and new elementary school classrooms;E L Nelson;J Educ Audiol,2007

3. An exploration of non- quiet listening at school;J Cruckley;J Educ Audiol,2011

4. Average speech levels and spectra in various speaking/listening conditions: a summary of the Pearson, Bennett, & Fidell (1977) report;W O Olsen;Am J Audiol,1998

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3