Separation of HCM and LQT Cardiac Diseases with Machine Learning of Ca2+ Transient Profiles

Author:

Joutsijoki Henry1,Penttinen Kirsi2,Juhola Martti1,Aalto-Setälä Katriina23

Affiliation:

1. Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland

2. Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland

3. Heart Center, Tampere University Hospital, Tampere, Finland

Abstract

Abstract Background Modeling human cardiac diseases with induced pluripotent stem cells not only enables to study disease pathophysiology and develop therapies but also, as we have previously showed, it can offer a tool for disease diagnostics. We previously observed that a few genetic cardiac diseases can be separated from each other and healthy controls by applying machine learning to Ca2+ transient signals measured from iPSC-derived cardiomyocytes (CMs). Objectives For the current research, 419 hypertrophic cardiomyopathy (HCM) transient signals and 228 long QT syndrome (LQTS) transient signals were measured. HCM signals included data recorded from iPSC-CMs carrying either α-tropomyosin, i.e., TPM1 (HCMT) or MYBPC3 or myosin-binding protein C (HCMM) mutation and LQTS signals included data recorded from iPSC-CMs carrying potassium voltage-gated channel subfamily Q member 1 (KCNQ1) mutation (long QT syndrome 1 [LQT1]) or KCNH2 mutation (long QT syndrome 2 [LQT2]). The main objective was to study whether and how effectively HCMM and HCMT can be separated from each other as well as LQT1 from LQT2. Methods After preprocessing those Ca2+ signals where we computed peak waveforms we then classified the two mutations of both disease pairs by using several different machine learning methods. Results We obtained excellent classification accuracies of 89% for HCM and even 100% for LQT at their best. Conclusion The results indicate that the methods applied would be efficient for the identification of these genetic cardiac diseases.

Funder

Finnish Foundation for Cardiovascular Research and Maud Kuistila Memorial Foundation

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3