Bur Hole–Based Resections of Intrinsic Brain Tumors with Exoscopic Visualization

Author:

Marenco-Hillembrand Lina1,Suarez-Meade Paola1,Chaichana Kaisorn L.1

Affiliation:

1. Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, United States

Abstract

Abstract Background The primary goal of brain tumor surgery is maximal safe resection while avoiding iatrogenic injury. As surgical technology increases, it is becoming more possible to resect these lesions using minimally invasive approaches. While keyhole surgeries are being advocated, the lower limit of these approaches is unclear. Bur hole–based approaches may represent a standardized minimally invasive approach. The exoscope may provide increased visualization over standard microscopic visualization, making this approach possible. This approach has yet to be described strictly for intra-axial brain tumors. Material and Methods All patients who underwent a bur hole–based surgery of an intra-axial tumor with exoscopic visualization by the senior author from January 2018 to December 2019 were prospectively identified and patient information and outcomes were collected. Results Fifteen consecutive patients underwent surgical resection of an intrinsic brain tumor using a bur hole–based approach with exoscopic visualization. The average ± standard deviation age was 57.9 ± 24.2 years. The pathology was a metastatic brain tumor in eight patients (53%), low-grade glioma in four patients (27%), and high-grade glioma in three patients (20%). The average percent resection was 100 ± 1%, where 14 (93%) underwent gross total resection. Following surgery, the median (interquartile range) Karnofsky performance scale (KPS) score was 90 (90–90), where 11 (73%) and four patients (27%) had improved and stable KPS, respectively. Zero patients had complications. The average length of stay following surgery was 1.4 ± 0.5 days, where nine patients (60%) were discharged on postoperative day 1. Conclusion This study shows that intra-axial tumors can be resected through a bur hole–based approach with exoscopic visualization with extensive resection, minimal morbidity, and early discharge rates.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3