Potential Role of Proteasome Accessory Factor-C in Resistance against Second Line Drugs in Mycobacteria

Author:

Narain Apoorva1ORCID,Dubey Rikesh K.2,Verma Ajay Kumar1,Srivastava Anand1,Kant Surya1

Affiliation:

1. Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India

2. Department of Microbiology, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh, India

Abstract

Abstract Objectives Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), can survive inside the host granuloma courtesy the various extrinsic and intrinsic factors involved. Continuous use or misuse of the anti TB drugs over the years has led to the development of resistance in MTB against antibiotics. Drug-resistant TB in particular has been a menace since treating it requires exposing the patient to drugs for a prolonged period of time. Multidrug-resistant (MDR) and extensively drug resistant TB cases have increased over the years mostly due to the exposure of MTB to suboptimal levels of drug. Proteasomes provide MTB its pathogenicity and hence helps it to survive inside the host even in the presence of drugs. Materials and Methods The recombinantly expressed proteasome accessory factor-C (PafC) protein was purified via Ni-NTA affinity chromatography and overexpressed in the nonpathogenic strain of mycobacteria (Mycobacterium smegmatis) for the comparative analysis of minimum inhibitory concentrations of antimycobacterial drugs. The bacteria were subjected to various stress conditions. Secretory nature of PafC was analyzed by probing the purified protein against patient sera. Quantitative mRNA analysis of pafC, lexA, and recA was performed to check for their level under fluoroquinolone (FQ) presence. The data were validated in clinical samples of pulmonary TB patients. Results pafC, that forms one part of paf operon, is involved in providing MTB its resistance against FQs. Through a series of experiments, we established the fact that PafC is upregulated in mycobacteria upon exposure to FQs and it leads to the increased intracellular survival of mycobacteria under the stresses generated by FQs. The study also refers to the correlation of pafC to deoxyribonucleic acid (DNA) damage repair enzymes lexA and recA at transcriptional level. The results obtained in vitro corroborated when the pulmonary TB patients’ samples were subjected to the same molecular analysis. Statistical Analysis All experiments were conducted at least in triplicate. p-Value of <0.05 was considered to be statistically significant Conclusion PafC plays a significant role in providing resistance to mycobacteria against FQ class of drugs by increasing its intracellular survival through increased drug efflux and getting involved with DNA damage repair machinery.

Publisher

Georg Thieme Verlag KG

Reference36 articles.

1. Immunology of tuberculosis;A Raja;Indian J Med Res,2004

2. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria?;M Silva Miranda;Clin Dev Immunol,2012

3. Mycobacterial efflux pumps and chemotherapeutic implications;M Viveiros;Int J Antimicrob Agents,2003

4. The quinolones: past, present, and future;V T Andriole;Clin Infect Dis,2005

5. Antibiotic resistance mechanisms in M. tuberculosis: an update;L Nguyen;Arch Toxicol,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3