Affiliation:
1. Department of Chemistry, Columbia University
2. Chemical Process Development, Bristol Myers Squibb
3. Small Molecule Drug Discovery, Bristol Myers Squibb
Abstract
AbstractPhotoredox catalysis has revolutionized synthetic chemistry in recent decades. However, the field has traditionally used high-energy blue/ultraviolet light to activate chromophores. High-energy irradiation is associated with several drawbacks (e.g., activation of sensitive functional groups, undesired metal-ligand homolysis, background activation of molecules, and poor penetration), which has led researchers to develop alternative systems with lower energy deep red (DR) or near-infrared (NIR) light. This graphical review provides a concise overview of photophysical principles relevant to photoredox catalysis. Several applications that benefit from low-energy irradiation, such as large-scale batch reactions, photodynamic therapy, biological labeling, and multi-photon excitation are reviewed.
Subject
Organic Chemistry,Materials Science (miscellaneous),Biomaterials,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献