Stability of SARS-CoV-2 RNA in Viral Lysis Buffer Stored at Different Temperatures

Author:

Perumal Nagaraj1ORCID,Jain Rajeev Kumar1,Shrivastava Rakesh2,Lalwani Jaya2,Chaurasia Deepti2

Affiliation:

1. State Virology Laboratory, Gandhi Medical College, Bhopal, Madhya Pradesh, India

2. Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India

Abstract

Abstract Objectives The present COVID-19 pandemic resulted in an increased need for molecular diagnostic testing. Delay in the specimen processing and suboptimal storage of suspected samples in laboratories leads to degradation of SARS-CoV-2 viral RNA. Viral lysis buffers from RNA extraction kits have the potential to stabilize RNA. Hence, this study aimed to investigate the stability of SARS-CoV-2 RNA in viral lysis buffer at different temperatures and time periods. Materials and Methods Aliquots of samples with known SARS-CoV-2 RNA were processed in viral lysis buffers simultaneously, stored separately at 2 to 8°C and 22 to 28°C for 24 hours, 48 hours and 72 hours. SARS-CoV-2 viral RNA was extracted from each aliquot and analyzed using multiplex real-time PCR. Results SARS-CoV-2 RNA in samples placed in viral lysis buffer was stable for 48 hours at both 2 to 8°C and 22 to 28°C temperatures. Slight decline in the viral RNA quantity was found on aliquots tested after 48 hours of both the temperatures. Conclusions Viral lysis buffer maintains the integrity of SARS-CoV-2 RNA for up to 48 hours even at room temperature and supports delayed diagnosis with an overwhelming sample load in testing laboratories.

Publisher

Georg Thieme Verlag KG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3