Modeling Care Team Structures in the Neonatal Intensive Care Unit through Network Analysis of EHR Audit Logs

Author:

Chen You12,Lehmann Christoph U.3,Hatch Leon D.4,Schremp Emma5,Malin Bradley A.126,France Daniel J.5

Affiliation:

1. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States

2. Department of Electrical Engineering and Computer Science, School of Engineering, Vanderbilt University, Nashville, Tennessee, United States

3. Departments of Pediatrics, Bioinformatics, and Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States

4. Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States

5. Department of Anesthesiology, Center for Research and Innovation in Systems Safety, Vanderbilt University Medical Center, Nashville, Tennessee, United States

6. Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States

Abstract

Abstract Background In the neonatal intensive care unit (NICU), predefined acuity-based team care models are restricted to core roles and neglect interactions with providers outside of the team, such as interactions that transpire via electronic health record (EHR) systems. These unaccounted interactions may be related to the efficiency of resource allocation, information flow, communication, and thus impact patient outcomes. This study applied network analysis methods to EHR audit logs to model the interactions of providers beyond their core roles to better understand the interaction network patterns of acuity-based teams and relationships of the network structures with postsurgical length of stay (PSLOS). Methods The study used the EHR log data of surgical neonates from a large academic medical center. The study included 104 surgical neonates, for whom 9,206 unique actions were performed by 457 providers in their EHRs. We applied network analysis methods to model EHR provider interaction networks of acuity-based teams in NICU postoperative care. We partitioned each EHR network into three subnetworks based on interaction types: (1) interactions between known core providers who were documented in scheduling records (core subnetwork); (2) interactions between core and noncore providers (extended subnetwork); and (3) interactions between noncore providers (extended subnetwork). For each core subnetwork, we assessed its capability to replicate predefined core-provider relations as documented in scheduling records. We further compared each EHR network, as well as its subnetworks, using standard network measures to determine its differences in network topologies. We conducted a case study to learn provider interaction networks taking care of 15 neonates who underwent gastrostomy tube placement surgery from EHR log data and measure the effectiveness of the interaction networks on PSLOS by the proportional-odds model. Results The provider networks of four acuity-based teams (two high and two low acuity), along with their subnetworks, were discovered. We found that beyond capturing the predefined core-provider relations, EHR audit logs can also learn a large number of relations between core and noncore providers or among noncore providers. Providers in the core subnetwork exhibited a greater number of connections with each other than with providers in the extended subnetworks. Many more providers in the core subnetwork serve as a hub than those in the other types of subnetworks. We also found that high-acuity teams exhibited more complex network structures than low-acuity teams, with high-acuity team generating 6,416 interactions between 407 providers compared with 931 interactions between 124 providers, respectively. In addition, we discovered that high-acuity and low-acuity teams shared more than 33 and 25% of providers with each other, respectively, but exhibited different collaborative structures demonstrating that NICU providers shift across different acuity teams and exhibit different network characteristics. Results of case study show that providers, whose patients had lower PSLOS, tended to disperse patient-related information to more colleagues within their network than those who treated higher PSLOS patients (p = 0.03). Conclusion Network analysis can be applied to EHR log data to model acuity-based NICU teams capturing interactions between providers within the predesigned core team as well as those outside of the core team. In the NICU, dissemination of information may be linked to reduced PSLOS. EHR log data provide an efficient, accessible, and research-friendly way to study provider interaction networks. Findings should guide improvements in the EHR system design to facilitate effective interactions between providers.

Funder

National Library of Medicine of the National Institutes of Health

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3